
3Data Warehouse and OLAP
Technology: An Overview

Data warehouses generalize and consolidate data in multidimensional space. The construction of
data warehouses involves data cleaning, data integration, and data transformation and
can be viewed as an important preprocessing step for data mining. Moreover, data ware-
houses provide on-line analytical processing (OLAP) tools for the interactive analysis of
multidimensional data of varied granularities, which facilitates effective data generaliza-
tion and data mining. Many other data mining functions, such as association, classifi-
cation, prediction, and clustering, can be integrated with OLAP operations to enhance
interactive mining of knowledge at multiple levels of abstraction. Hence, the data ware-
house has become an increasingly important platform for data analysis and on-line ana-
lytical processing and will provide an effective platform for data mining. Therefore, data
warehousing and OLAP form an essential step in the knowledge discovery process. This
chapter presents an overview of data warehouse andOLAP technology. Such an overview
is essential for understanding the overall data mining and knowledge discovery process.

In this chapter, we study a well-accepted definition of the data warehouse and see
why more and more organizations are building data warehouses for the analysis of their
data. In particular, we study the data cube, a multidimensional data model for data ware-
houses and OLAP, as well as OLAP operations such as roll-up, drill-down, slicing, and
dicing. We also look at data warehouse architecture, including steps on data warehouse
design and construction. An overview of data warehouse implementation examines gen-
eral strategies for efficient data cube computation,OLAPdata indexing, andOLAPquery
processing. Finally, we look at on-line-analytical mining, a powerful paradigm that inte-
grates data warehouse and OLAP technology with that of data mining.

3.1What Is a Data Warehouse?

Data warehousing provides architectures and tools for business executives to systemat-
ically organize, understand, and use their data to make strategic decisions. Data ware-
house systems are valuable tools in today’s competitive, fast-evolving world. In the last
several years, many firms have spent millions of dollars in building enterprise-wide data
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warehouses. Many people feel that with competition mounting in every industry, data
warehousing is the latest must-have marketing weapon—a way to retain customers by
learning more about their needs.

“Then, what exactly is a data warehouse?”Data warehouses have been defined inmany
ways, making it difficult to formulate a rigorous definition. Loosely speaking, a data
warehouse refers to a database that ismaintained separately from an organization’s oper-
ational databases. Data warehouse systems allow for the integration of a variety of appli-
cation systems. They support information processing by providing a solid platform of
consolidated historical data for analysis.

According to William H. Inmon, a leading architect in the construction of data ware-
house systems, “A data warehouse is a subject-oriented, integrated, time-variant, and
nonvolatile collection of data in support of management’s decision making process”
[Inm96]. This short, but comprehensive definition presents the major features of a data
warehouse. The four keywords, subject-oriented, integrated, time-variant, and nonvolatile,
distinguish data warehouses from other data repository systems, such as relational
database systems, transaction processing systems, and file systems. Let’s take a closer
look at each of these key features.

Subject-oriented: A data warehouse is organized around major subjects, such as cus-
tomer, supplier, product, and sales. Rather than concentrating on the day-to-day oper-
ations and transaction processing of an organization, a data warehouse focuses on the
modeling and analysis of data for decision makers. Hence, data warehouses typically
provide a simple and concise view around particular subject issues by excluding data
that are not useful in the decision support process.

Integrated: A data warehouse is usually constructed by integratingmultiple heteroge-
neous sources, such as relational databases, flat files, and on-line transaction records.
Data cleaning and data integration techniques are applied to ensure consistency in
naming conventions, encoding structures, attribute measures, and so on.

Time-variant: Data are stored to provide information from a historical perspective
(e.g., the past 5–10 years). Every key structure in the data warehouse contains, either
implicitly or explicitly, an element of time.

Nonvolatile: A data warehouse is always a physically separate store of data trans-
formed from the application data found in the operational environment. Due to
this separation, a data warehouse does not require transaction processing, recovery,
and concurrency control mechanisms. It usually requires only two operations in data
accessing: initial loading of data and access of data.

In sum, a data warehouse is a semantically consistent data store that serves as a phys-
ical implementation of a decision support data model and stores the information on
which an enterprise needs to make strategic decisions. A data warehouse is also often
viewed as an architecture, constructed by integrating data from multiple heterogeneous
sources to support structured and/or ad hoc queries, analytical reporting, and decision
making.
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Based on this information, we view data warehousing as the process of constructing
and using data warehouses. The construction of a data warehouse requires data cleaning,
data integration, and data consolidation. The utilization of a data warehouse often neces-
sitates a collection of decision support technologies. This allows “knowledge workers”
(e.g., managers, analysts, and executives) to use the warehouse to quickly and conve-
niently obtain an overview of the data, and to make sound decisions based on informa-
tion in the warehouse. Some authors use the term “data warehousing” to refer only to
the process of data warehouse construction, while the term “warehouse DBMS” is used
to refer to the management and utilization of data warehouses. We will not make this
distinction here.

“How are organizations using the information from data warehouses?” Many organi-
zations use this information to support business decision-making activities, including
(1) increasing customer focus, which includes the analysis of customer buying pat-
terns (such as buying preference, buying time, budget cycles, and appetites for spend-
ing); (2) repositioning products and managing product portfolios by comparing the
performance of sales by quarter, by year, and by geographic regions in order to fine-
tune production strategies; (3) analyzing operations and looking for sources of profit;
and (4) managing the customer relationships, making environmental corrections, and
managing the cost of corporate assets.

Data warehousing is also very useful from the point of view of heterogeneous database
integration. Many organizations typically collect diverse kinds of data andmaintain large
databases from multiple, heterogeneous, autonomous, and distributed information
sources. To integrate such data, and provide easy and efficient access to it, is highly desir-
able, yet challenging. Much effort has been spent in the database industry and research
community toward achieving this goal.

The traditional database approach to heterogeneous database integration is to build
wrappers and integrators (or mediators), on top of multiple, heterogeneous databases.
When a query is posed to a client site, a metadata dictionary is used to translate the query
into queries appropriate for the individual heterogeneous sites involved. These queries
are then mapped and sent to local query processors. The results returned from the dif-
ferent sites are integrated into a global answer set. This query-driven approach requires
complex information filtering and integration processes, and competes for resources
with processing at local sources. It is inefficient and potentially expensive for frequent
queries, especially for queries requiring aggregations.

Data warehousing provides an interesting alternative to the traditional approach of
heterogeneous database integration described above. Rather than using a query-driven
approach, data warehousing employs an update-driven approach in which information
frommultiple, heterogeneous sources is integrated in advance and stored in a warehouse
for direct querying and analysis. Unlike on-line transaction processing databases, data
warehouses do not contain the most current information. However, a data warehouse
brings high performance to the integrated heterogeneous database system because data
are copied, preprocessed, integrated, annotated, summarized, and restructured into one
semantic data store. Furthermore, query processing in datawarehouses does not interfere
with the processing at local sources. Moreover, data warehouses can store and integrate
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historical information and support complex multidimensional queries. As a result, data
warehousing has become popular in industry.

3.1.1 Differences between Operational Database Systems
and Data Warehouses

Because most people are familiar with commercial relational database systems, it is easy
to understand what a data warehouse is by comparing these two kinds of systems.

The major task of on-line operational database systems is to perform on-line trans-
action and query processing. These systems are called on-line transaction processing
(OLTP) systems. They cover most of the day-to-day operations of an organization, such
as purchasing, inventory, manufacturing, banking, payroll, registration, and accounting.
Data warehouse systems, on the other hand, serve users or knowledge workers in the role
of data analysis and decisionmaking. Such systems can organize and present data in var-
ious formats in order to accommodate the diverse needs of the different users. These
systems are known as on-line analytical processing (OLAP) systems.

The major distinguishing features between OLTP and OLAP are summarized as
follows:

Users and system orientation: An OLTP system is customer-oriented and is used for
transaction and query processing by clerks, clients, and information technology pro-
fessionals. An OLAP system ismarket-oriented and is used for data analysis by knowl-
edge workers, including managers, executives, and analysts.

Data contents: An OLTP systemmanages current data that, typically, are too detailed
to be easily used for decision making. An OLAP system manages large amounts of
historical data, provides facilities for summarization and aggregation, and stores and
manages information at different levels of granularity. These features make the data
easier to use in informed decision making.

Database design: An OLTP system usually adopts an entity-relationship (ER) data
model and an application-oriented database design. AnOLAP system typically adopts
either a star or snowflake model (to be discussed in Section 3.2.2) and a subject-
oriented database design.

View: An OLTP system focuses mainly on the current data within an enterprise or
department, without referring to historical data or data in different organizations.
In contrast, an OLAP system often spans multiple versions of a database schema,
due to the evolutionary process of an organization. OLAP systems also deal with
information that originates from different organizations, integrating information
from many data stores. Because of their huge volume, OLAP data are stored on
multiple storage media.

Access patterns: The access patterns of anOLTP systemconsistmainly of short, atomic
transactions. Such a system requires concurrency control and recovery mechanisms.
However, accesses to OLAP systems are mostly read-only operations (because most
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Table 3.1 Comparison between OLTP and OLAP systems.

Feature OLTP OLAP

Characteristic operational processing informational processing

Orientation transaction analysis

User clerk, DBA, database professional knowledge worker (e.g., manager,
executive, analyst)

Function day-to-day operations long-term informational requirements,
decision support

DB design ER based, application-oriented star/snowflake, subject-oriented

Data current; guaranteed up-to-date historical; accuracy maintained
over time

Summarization primitive, highly detailed summarized, consolidated

View detailed, flat relational summarized, multidimensional

Unit of work short, simple transaction complex query

Access read/write mostly read

Focus data in information out

Operations index/hash on primary key lots of scans

Number of records
accessed tens millions

Number of users thousands hundreds

DB size 100 MB to GB 100 GB to TB

Priority high performance, high availability high flexibility, end-user autonomy

Metric transaction throughput query throughput, response time

NOTE: Table is partially based on [CD97].

data warehouses store historical rather than up-to-date information), althoughmany
could be complex queries.

Other features thatdistinguishbetweenOLTPandOLAPsystems includedatabase size,
frequency of operations, and performance metrics. These are summarized in Table 3.1.

3.1.2 But, Why Have a Separate Data Warehouse?

Because operational databases store huge amounts of data, you may wonder, “why not
perform on-line analytical processing directly on such databases instead of spending addi-
tional time and resources to construct a separate data warehouse?” Amajor reason for such
a separation is to help promote the high performance of both systems. An operational
database is designed and tuned from known tasks and workloads, such as indexing and
hashing using primary keys, searching for particular records, and optimizing “canned”
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queries. On the other hand, data warehouse queries are often complex. They involve the
computation of large groups of data at summarized levels, andmay require the use of spe-
cial data organization, access, and implementation methods based on multidimensional
views. Processing OLAP queries in operational databases would substantially degrade
the performance of operational tasks.

Moreover, an operational database supports the concurrent processing of multiple
transactions. Concurrency control and recovery mechanisms, such as locking and log-
ging, are required to ensure the consistency and robustness of transactions. An OLAP
query often needs read-only access of data records for summarization and aggregation.
Concurrency control and recovery mechanisms, if applied for such OLAP operations,
may jeopardize the execution of concurrent transactions and thus substantially reduce
the throughput of an OLTP system.

Finally, the separation of operational databases from data warehouses is based on the
different structures, contents, and uses of the data in these two systems. Decision sup-
port requires historical data, whereas operational databases do not typically maintain
historical data. In this context, the data in operational databases, though abundant, is
usually far from complete for decision making. Decision support requires consolidation
(such as aggregation and summarization) of data from heterogeneous sources, result-
ing in high-quality, clean, and integrated data. In contrast, operational databases con-
tain only detailed raw data, such as transactions, which need to be consolidated before
analysis. Because the two systems provide quite different functionalities and require dif-
ferent kinds of data, it is presently necessary to maintain separate databases. However,
many vendors of operational relational database management systems are beginning to
optimize such systems to support OLAP queries. As this trend continues, the separation
between OLTP and OLAP systems is expected to decrease.

3.2 A Multidimensional Data Model

Data warehouses and OLAP tools are based on a multidimensional data model. This
model views data in the form of a data cube. In this section, you will learn how data
cubes model n-dimensional data. You will also learn about concept hierarchies and how
they can be used in basic OLAP operations to allow interactive mining at multiple levels
of abstraction.

3.2.1 From Tables and Spreadsheets to Data Cubes

“What is a data cube?” A data cube allows data to be modeled and viewed in multiple
dimensions. It is defined by dimensions and facts.

In general terms, dimensions are the perspectives or entities with respect to which
an organization wants to keep records. For example, AllElectronics may create a sales
data warehouse in order to keep records of the store’s sales with respect to the
dimensions time, item, branch, and location. These dimensions allow the store to
keep track of things like monthly sales of items and the branches and locations
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Table 3.2 A 2-D view of sales data for AllElectronics according to the dimensions time and item,
where the sales are from branches located in the city of Vancouver. The measure dis-
played is dollars sold (in thousands).

location = “Vancouver”

item (type)

home
time (quarter) entertainment computer phone security

Q1 605 825 14 400

Q2 680 952 31 512

Q3 812 1023 30 501

Q4 927 1038 38 580

at which the items were sold. Each dimension may have a table associated with
it, called a dimension table, which further describes the dimension. For example,
a dimension table for item may contain the attributes item name, brand, and type.
Dimension tables can be specified by users or experts, or automatically generated
and adjusted based on data distributions.

A multidimensional data model is typically organized around a central theme, like
sales, for instance. This theme is represented by a fact table. Facts are numerical mea-
sures. Think of them as the quantities by which we want to analyze relationships between
dimensions. Examples of facts for a sales data warehouse include dollars sold
(sales amount in dollars), units sold (number of units sold), and amount budgeted. The
fact table contains the names of the facts, ormeasures, as well as keys to each of the related
dimension tables. You will soon get a clearer picture of how this works when we look at
multidimensional schemas.

Although we usually think of cubes as 3-D geometric structures, in data warehousing
the data cube is n-dimensional. To gain a better understanding of data cubes and the
multidimensional data model, let’s start by looking at a simple 2-D data cube that is, in
fact, a table or spreadsheet for sales data from AllElectronics. In particular, we will look at
theAllElectronics sales data for items sold per quarter in the city of Vancouver. These data
are shown in Table 3.2. In this 2-D representation, the sales for Vancouver are shownwith
respect to the time dimension (organized in quarters) and the item dimension (organized
according to the types of items sold). The fact or measure displayed is dollars sold (in
thousands).

Now, suppose that we would like to view the sales data with a third dimension. For
instance, suppose we would like to view the data according to time and item, as well as
location for the cities Chicago, New York, Toronto, and Vancouver. These 3-D data are
shown in Table 3.3. The 3-D data of Table 3.3 are represented as a series of 2-D tables.
Conceptually, we may also represent the same data in the form of a 3-D data cube, as in
Figure 3.1.
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Table 3.3 A 3-D view of sales data for AllElectronics, according to the dimensions time, item, and
location. The measure displayed is dollars sold (in thousands).

location = “Chicago” location = “New York” location = “Toronto” location = “Vancouver”

item item item item

home home home home

time ent. comp. phone sec. ent. comp. phone sec. ent. comp. phone sec. ent. comp. phone sec.

Q1 854 882 89 623 1087 968 38 872 818 746 43 591 605 825 14 400

Q2 943 890 64 698 1130 1024 41 925 894 769 52 682 680 952 31 512

Q3 1032 924 59 789 1034 1048 45 1002 940 795 58 728 812 1023 30 501

Q4 1129 992 63 870 1142 1091 54 984 978 864 59 784 927 1038 38 580
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Figure 3.1 A 3-D data cube representation of the data in Table 3.3, according to the dimensions time,
item, and location. The measure displayed is dollars sold (in thousands).

Suppose that we would now like to view our sales data with an additional fourth
dimension, such as supplier. Viewing things in 4-D becomes tricky. However, we can
think of a 4-D cube as being a series of 3-D cubes, as shown in Figure 3.2. If we continue
in this way, wemay display any n-D data as a series of (n−1)-D “cubes.” The data cube is
a metaphor for multidimensional data storage. The actual physical storage of such data
may differ from its logical representation. The important thing to remember is that data
cubes are n-dimensional and do not confine data to 3-D.

The above tables show the data at different degrees of summarization. In the data
warehousing research literature, a data cube such as each of the above is often referred to
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Figure 3.2 A 4-D data cube representation of sales data, according to the dimensions time, item, location,
and supplier. The measure displayed is dollars sold (in thousands). For improved readability,
only some of the cube values are shown.
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Figure 3.3 Lattice of cuboids, making up a 4-D data cube for the dimensions time, item, location, and
supplier. Each cuboid represents a different degree of summarization.

as a cuboid. Given a set of dimensions, we can generate a cuboid for each of the possible
subsets of the given dimensions. The result would form a lattice of cuboids, each showing
the data at a different level of summarization, or group by. The lattice of cuboids is then
referred to as a data cube. Figure 3.3 shows a lattice of cuboids forming a data cube for
the dimensions time, item, location, and supplier.
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The cuboid that holds the lowest level of summarization is called the base cuboid. For
example, the 4-D cuboid in Figure 3.2 is the base cuboid for the given time, item, location,
and supplierdimensions. Figure 3.1 is a 3-D (nonbase) cuboid for time, item, and location,
summarized for all suppliers. The 0-D cuboid, which holds the highest level of summa-
rization, is called the apex cuboid. In our example, this is the total sales, or dollars sold,
summarized over all four dimensions. The apex cuboid is typically denoted by all.

3.2.2 Stars, Snowflakes, and Fact Constellations:
Schemas for Multidimensional Databases

The entity-relationship data model is commonly used in the design of relational
databases, where a database schema consists of a set of entities and the relationships
between them. Such a data model is appropriate for on-line transaction processing.
A data warehouse, however, requires a concise, subject-oriented schema that facilitates
on-line data analysis.

The most popular data model for a data warehouse is a multidimensional model.
Such a model can exist in the form of a star schema, a snowflake schema, or a fact con-
stellation schema. Let’s look at each of these schema types.

Star schema: The most common modeling paradigm is the star schema, in which the
data warehouse contains (1) a large central table (fact table) containing the bulk of
the data, with no redundancy, and (2) a set of smaller attendant tables (dimension
tables), one for each dimension. The schema graph resembles a starburst, with the
dimension tables displayed in a radial pattern around the central fact table.

Example 3.1 Star schema.A star schema forAllElectronics sales is shown in Figure 3.4. Sales are consid-
eredalong fourdimensions, namely, time, item, branch, and location. The schemacontains
a central fact table for sales that contains keys to each of the four dimensions, along with
twomeasures:dollars sold andunits sold. Tominimize the size of the fact table, dimension
identifiers (such as time key and item key) are system-generated identifiers.

Notice that in the star schema, each dimension is represented by only one table, and
each table contains a set of attributes. For example, the location dimension table contains
the attribute set {location key, street, city, province or state, country}. This constraintmay
introduce some redundancy. For example, “Vancouver” and “Victoria” are both cities in
the Canadian province of British Columbia. Entries for such cities in the location dimen-
sion table will create redundancy among the attributes province or state and country,
that is, (..., Vancouver, British Columbia, Canada) and (..., Victoria, British Columbia,
Canada). Moreover, the attributes within a dimension table may form either a hierarchy
(total order) or a lattice (partial order).

Snowflake schema: The snowflake schema is a variant of the star schema model, where
some dimension tables are normalized, thereby further splitting the data into addi-
tional tables. The resulting schema graph forms a shape similar to a snowflake.
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Figure 3.4 Star schema of a data warehouse for sales.

The major difference between the snowflake and star schema models is that the
dimension tables of the snowflake model may be kept in normalized form to reduce
redundancies. Such a table is easy to maintain and saves storage space. However,
this saving of space is negligible in comparison to the typical magnitude of the fact
table. Furthermore, the snowflake structure can reduce the effectiveness of browsing,
since more joins will be needed to execute a query. Consequently, the system per-
formance may be adversely impacted. Hence, although the snowflake schema reduces
redundancy, it is not as popular as the star schema in data warehouse design.

Example 3.2 Snowflake schema. A snowflake schema for AllElectronics sales is given in Figure 3.5.
Here, the sales fact table is identical to that of the star schema in Figure 3.4. The
main difference between the two schemas is in the definition of dimension tables.
The single dimension table for item in the star schema is normalized in the snowflake
schema, resulting in new item and supplier tables. For example, the item dimension
table now contains the attributes item key, item name, brand, type, and supplier key,
where supplier key is linked to the supplier dimension table, containing supplier key
and supplier type information. Similarly, the single dimension table for location in the
star schema can be normalized into two new tables: location and city. The city key in
the new location table links to the city dimension. Notice that further normalization
can be performed on province or state and country in the snowflake schema shown
in Figure 3.5, when desirable.
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Figure 3.5 Snowflake schema of a data warehouse for sales.

Fact constellation: Sophisticated applications may require multiple fact tables to share
dimension tables. This kind of schema can be viewed as a collection of stars, and hence
is called a galaxy schema or a fact constellation.

Example 3.3 Fact constellation. A fact constellation schema is shown in Figure 3.6. This schema spec-
ifies two fact tables, sales and shipping. The sales table definition is identical to that of
the star schema (Figure 3.4). The shipping table has five dimensions, or keys: item key,
time key, shipper key, from location, and to location, and two measures: dollars cost and
units shipped. A fact constellation schema allows dimension tables to be shared between
fact tables. For example, the dimensions tables for time, item, and location are shared
between both the sales and shipping fact tables.

In data warehousing, there is a distinction between a data warehouse and a data mart.
A data warehouse collects information about subjects that span the entire organization,
such as customers, items, sales, assets, and personnel, and thus its scope is enterprise-wide.
For data warehouses, the fact constellation schema is commonly used, since it canmodel
multiple, interrelated subjects. A data mart, on the other hand, is a department subset
of the data warehouse that focuses on selected subjects, and thus its scope is department-
wide. For data marts, the star or snowflake schema are commonly used, since both are
geared toward modeling single subjects, although the star schema is more popular and
efficient.
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Figure 3.6 Fact constellation schema of a data warehouse for sales and shipping.

3.2.3 Examples for Defining Star, Snowflake,
and Fact Constellation Schemas

“How can I define a multidimensional schema for my data?” Just as relational query
languages like SQL can be used to specify relational queries, a data mining query lan-
guage can be used to specify data mining tasks. In particular, we examine how to define
data warehouses and data marts in our SQL-based data mining query language,DMQL.

Data warehouses and data marts can be defined using two language primitives, one
for cube definition and one for dimension definition. The cube definition statement has the
following syntax:

define cube �cube name� [�dimension list�]: �measure list�

The dimension definition statement has the following syntax:

define dimension �dimension name� as (�attribute or dimension list�)

Let’s look at examples of how to define the star, snowflake, and fact constellation
schemas of Examples 3.1 to 3.3 using DMQL. DMQL keywords are displayed in sans
serif font.

Example 3.4 Star schema definition. The star schema of Example 3.1 and Figure 3.4 is defined in
DMQL as follows:

define cube sales star [time, item, branch, location]:
dollars sold = sum(sales in dollars), units sold = count(*)
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define dimension time as (time key, day, day of week, month, quarter, year)
define dimension item as (item key, item name, brand, type, supplier type)
define dimension branch as (branch key, branch name, branch type)
define dimension location as (location key, street, city, province or state,

country)

The define cube statement defines a data cube called sales star, which corresponds
to the central sales fact table of Example 3.1. This command specifies the dimensions
and the two measures, dollars sold and units sold. The data cube has four dimensions,
namely, time, item, branch, and location. A define dimension statement is used to define
each of the dimensions.

Example 3.5 Snowflake schema definition. The snowflake schema of Example 3.2 and Figure 3.5 is
defined in DMQL as follows:

define cube sales snowflake [time, item, branch, location]:
dollars sold = sum(sales in dollars), units sold = count(*)

define dimension time as (time key, day, day of week, month, quarter, year)
define dimension item as (item key, item name, brand, type, supplier

(supplier key, supplier type))
define dimension branch as (branch key, branch name, branch type)
define dimension location as (location key, street, city

(city key, city, province or state, country))

This definition is similar to that of sales star (Example 3.4), except that, here, the item
and location dimension tables are normalized. For instance, the item dimension of the
sales star data cube has been normalized in the sales snowflake cube into two dimension
tables, item and supplier.Note that thedimensiondefinition for supplier is specifiedwithin
the definition for item. Defining supplier in this way implicitly creates a supplier key in the
item dimension table definition. Similarly, the location dimension of the sales star data
cube has been normalized in the sales snowflake cube into two dimension tables, location
and city. The dimension definition for city is specified within the definition for location.
In this way, a city key is implicitly created in the location dimension table definition.

Finally, a fact constellation schema can be defined as a set of interconnected cubes.
Below is an example.

Example 3.6 Fact constellation schema definition. The fact constellation schema of Example 3.3 and
Figure 3.6 is defined in DMQL as follows:

define cube sales [time, item, branch, location]:
dollars sold = sum(sales in dollars), units sold = count(*)

define dimension time as (time key, day, day of week, month, quarter, year)
define dimension item as (item key, item name, brand, type, supplier type)
define dimension branch as (branch key, branch name, branch type)
define dimension location as (location key, street, city, province or state,

country)
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define cube shipping [time, item, shipper, from location, to location]:
dollars cost = sum(cost in dollars), units shipped = count(*)

define dimension time as time in cube sales
define dimension item as item in cube sales
define dimension shipper as (shipper key, shipper name, location as

location in cube sales, shipper type)
define dimension from location as location in cube sales
define dimension to location as location in cube sales

A define cube statement is used to define data cubes for sales and shipping, cor-
responding to the two fact tables of the schema of Example 3.3. Note that the time,
item, and location dimensions of the sales cube are shared with the shipping cube.
This is indicated for the time dimension, for example, as follows. Under the define
cube statement for shipping, the statement “define dimension time as time in cube
sales” is specified.

3.2.4 Measures: Their Categorization and Computation

“How are measures computed?” To answer this question, we first study howmeasures can
be categorized.1 Note that amultidimensional point in the data cube space can be defined
by a set of dimension-value pairs, for example, �time = “Q1”, location = “Vancouver”,
item = “computer”�. A data cube measure is a numerical function that can be evaluated
at each point in the data cube space. A measure value is computed for a given point by
aggregating the data corresponding to the respective dimension-value pairs defining the
given point. We will look at concrete examples of this shortly.

Measures can be organized into three categories (i.e., distributive, algebraic, holistic),
based on the kind of aggregate functions used.

Distributive: An aggregate function is distributive if it can be computed in a distributed
manner as follows. Suppose the data are partitioned into n sets.We apply the function
to each partition, resulting in n aggregate values. If the result derived by applying the
function to the n aggregate values is the same as that derived by applying the func-
tion to the entire data set (without partitioning), the function can be computed in
a distributed manner. For example, count() can be computed for a data cube by first
partitioning the cube into a set of subcubes, computing count() for each subcube, and
then summing up the counts obtained for each subcube. Hence, count() is a distribu-
tive aggregate function. For the same reason, sum(), min(), andmax() are distributive
aggregate functions. A measure is distributive if it is obtained by applying a distribu-
tive aggregate function. Distributive measures can be computed efficiently because
they can be computed in a distributive manner.

1This categorization was briefly introduced in Chapter 2 with regards to the computation of measures
for descriptive data summaries. We reexamine it here in the context of data cube measures.
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Algebraic: An aggregate function is algebraic if it can be computed by an algebraic
function with M arguments (where M is a bounded positive integer), each of which
is obtained by applying a distributive aggregate function. For example, avg() (aver-
age) can be computed by sum()/count(), where both sum() and count() are dis-
tributive aggregate functions. Similarly, it can be shown that min N() and max N()
(which find the N minimum and N maximum values, respectively, in a given set)
and standard deviation() are algebraic aggregate functions. A measure is algebraic
if it is obtained by applying an algebraic aggregate function.

Holistic: An aggregate function is holistic if there is no constant bound on the stor-
age size needed to describe a subaggregate. That is, there does not exist an algebraic
function with M arguments (where M is a constant) that characterizes the computa-
tion. Common examples of holistic functions include median(), mode(), and rank().
A measure is holistic if it is obtained by applying a holistic aggregate function.

Most large data cube applications require efficient computation of distributive and
algebraic measures. Many efficient techniques for this exist. In contrast, it is difficult to
compute holistic measures efficiently. Efficient techniques to approximate the computa-
tion of some holistic measures, however, do exist. For example, rather than computing
the exact median(), Equation (2.3) of Chapter 2 can be used to estimate the approxi-
mate median value for a large data set. In many cases, such techniques are sufficient to
overcome the difficulties of efficient computation of holistic measures.

Example 3.7 Interpretingmeasures for data cubes.Manymeasures of a data cube can be computed by
relational aggregation operations. In Figure 3.4, we saw a star schema for AllElectronics
sales that contains twomeasures, namely, dollars sold and units sold. In Example 3.4, the
sales star data cube corresponding to the schema was defined using DMQL commands.
“But how are these commands interpreted in order to generate the specified data cube?”

Suppose that the relational database schema of AllElectronics is the following:

time(time key, day, day of week, month, quarter, year)
item(item key, item name, brand, type, supplier type)
branch(branch key, branch name, branch type)
location(location key, street, city, province or state, country)
sales(time key, item key, branch key, location key, number of units sold, price)

The DMQL specification of Example 3.4 is translated into the following SQL query,
which generates the required sales star cube. Here, the sum aggregate function, is used
to compute both dollars sold and units sold:

select s.time key, s.item key, s.branch key, s.location key,
sum(s.number of units sold ∗ s.price), sum(s.number of units sold)

from time t, item i, branch b, location l, sales s,
where s.time key = t.time key and s.item key = i.item key

and s.branch key = b.branch key and s.location key = l.location key
group by s.time key, s.item key, s.branch key, s.location key
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The cube created in the above query is the base cuboid of the sales star data cube. It
contains all of the dimensions specified in the data cube definition, where the granularity
of each dimension is at the join key level. A join key is a key that links a fact table and
a dimension table. The fact table associated with a base cuboid is sometimes referred to
as the base fact table.

By changing the group by clauses, we can generate other cuboids for the sales star data
cube. For example, instead of grouping by s.time key, we can group by t.month, whichwill
sum up the measures of each group by month. Also, removing “group by s.branch key”
will generate a higher-level cuboid (where sales are summed for all branches, rather than
broken down per branch). Suppose we modify the above SQL query by removing all of
the group by clauses. This will result in obtaining the total sum of dollars sold and the
total count of units sold for the given data. This zero-dimensional cuboid is the apex
cuboid of the sales star data cube. In addition, other cuboids can be generated by apply-
ing selection and/or projection operations on the base cuboid, resulting in a lattice of
cuboids as described in Section 3.2.1. Each cuboid corresponds to a different degree of
summarization of the given data.

Most of the current data cube technology confines the measures of multidimensional
databases to numerical data. However, measures can also be applied to other kinds of
data, such as spatial, multimedia, or text data. This will be discussed in future chapters.

3.2.5 Concept Hierarchies

A concept hierarchy defines a sequence of mappings from a set of low-level concepts
to higher-level, more general concepts. Consider a concept hierarchy for the dimension
location.Cityvalues for location includeVancouver,Toronto,NewYork,andChicago.Each
city, however, can be mapped to the province or state to which it belongs. For example,
Vancouver canbemapped toBritishColumbia, andChicago to Illinois.Theprovinces and
states can in turn be mapped to the country to which they belong, such as Canada or the
USA. Thesemappings forma concept hierarchy for the dimension location,mapping a set
of low-level concepts (i.e., cities) to higher-level, more general concepts (i.e., countries).
The concept hierarchy described above is illustrated in Figure 3.7.

Many concept hierarchies are implicit within the database schema. For example, sup-
pose that the dimension location is described by the attributes number, street, city,
province or state,zipcode, andcountry.Theseattributesarerelatedbyatotalorder, forming
a concept hierarchy such as “street < city < province or state < country”. This hierarchy
is shown in Figure 3.8(a). Alternatively, the attributes of a dimension may be organized
in a partial order, forming a lattice. An example of a partial order for the time dimension
based on the attributes day, week, month, quarter, and year is “day < {month <quarter;
week} < year”.2 This lattice structure is shown in Figure 3.8(b). A concept hierarchy

2Since a week often crosses the boundary of two consecutive months, it is usually not treated as a lower
abstraction of month. Instead, it is often treated as a lower abstraction of year, since a year contains
approximately 52 weeks.
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Figure 3.7 A concept hierarchy for the dimension location. Due to space limitations, not all of the nodes
of the hierarchy are shown (as indicated by the use of “ellipsis” between nodes).
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Figure 3.8 Hierarchical and lattice structures of attributes in warehouse dimensions: (a) a hierarchy for
location; (b) a lattice for time.

that is a total or partial order among attributes in a database schema is called a schema
hierarchy. Concept hierarchies that are common to many applications may be prede-
fined in the data mining system, such as the concept hierarchy for time. Data mining
systems should provide users with the flexibility to tailor predefined hierarchies accord-
ing to their particular needs. For example, users may like to define a fiscal year starting
on April 1 or an academic year starting on September 1.
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Figure 3.9 A concept hierarchy for the attribute price.

Concept hierarchies may also be defined by discretizing or grouping values for a given
dimension or attribute, resulting in a set-grouping hierarchy. A total or partial order can
be defined among groups of values. An example of a set-grouping hierarchy is shown in
Figure 3.9 for the dimension price, where an interval ($X . . .$Y ] denotes the range from
$X (exclusive) to $Y (inclusive).

There may be more than one concept hierarchy for a given attribute or dimension,
based on different user viewpoints. For instance, a user may prefer to organize price by
defining ranges for inexpensive, moderately priced, and expensive.

Concept hierarchies may be provided manually by system users, domain experts, or
knowledge engineers, or may be automatically generated based on statistical analysis of
the data distribution. The automatic generation of concept hierarchies is discussed in
Chapter 2 as a preprocessing step in preparation for data mining.

Concept hierarchies allow data to be handled at varying levels of abstraction, as we
shall see in the following subsection.

3.2.6 OLAP Operations in the Multidimensional Data Model

“How are concept hierarchies useful in OLAP?” In the multidimensional model, data are
organized into multiple dimensions, and each dimension contains multiple levels of
abstraction defined by concept hierarchies. This organization provides users with the
flexibility to view data from different perspectives. A number of OLAP data cube opera-
tions exist to materialize these different views, allowing interactive querying and analysis
of the data at hand. Hence, OLAP provides a user-friendly environment for interactive
data analysis.

Example 3.8 OLAP operations. Let’s look at some typical OLAP operations for multidimensional
data. Each of the operations described below is illustrated in Figure 3.10. At the center
of the figure is a data cube for AllElectronics sales. The cube contains the dimensions
location, time, and item, where location is aggregated with respect to city values, time is
aggregated with respect to quarters, and item is aggregated with respect to item types. To
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Figure 3.10 Examples of typical OLAP operations on multidimensional data.
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aid in our explanation, we refer to this cube as the central cube. The measure displayed
is dollars sold (in thousands). (For improved readability, only some of the cubes’ cell
values are shown.) The data examined are for the cities Chicago, New York, Toronto, and
Vancouver.

Roll-up: The roll-up operation (also called the drill-up operation by some vendors)
performs aggregation on a data cube, either by climbing up a concept hierarchy for
a dimension or by dimension reduction. Figure 3.10 shows the result of a roll-up
operation performed on the central cube by climbing up the concept hierarchy for
location given in Figure 3.7. This hierarchy was defined as the total order “street
< city < province or state < country.” The roll-up operation shown aggregates
the data by ascending the location hierarchy from the level of city to the level of
country. In other words, rather than grouping the data by city, the resulting cube
groups the data by country.

When roll-up is performed by dimension reduction, one or more dimensions are
removed from the given cube. For example, consider a sales data cube containing only
the two dimensions location and time. Roll-up may be performed by removing, say,
the time dimension, resulting in an aggregation of the total sales by location, rather
than by location and by time.

Drill-down: Drill-down is the reverse of roll-up. It navigates from less detailed data to
more detailed data. Drill-down can be realized by either stepping down a concept hier-
archy for a dimension or introducing additional dimensions. Figure 3.10 shows the
result of a drill-down operation performed on the central cube by stepping down a
concept hierarchy for time defined as “day < month < quarter < year.” Drill-down
occurs by descending the time hierarchy from the level of quarter to the more detailed
level of month. The resulting data cube details the total sales per month rather than
summarizing them by quarter.

Because a drill-down adds more detail to the given data, it can also be performed
by adding new dimensions to a cube. For example, a drill-down on the central cube of
Figure 3.10 can occur by introducing an additional dimension, such as customer group.

Slice and dice: The slice operation performs a selection on one dimension of the
given cube, resulting in a subcube. Figure 3.10 shows a slice operation where
the sales data are selected from the central cube for the dimension time using
the criterion time = “Q1”. The dice operation defines a subcube by performing a
selection on two or more dimensions. Figure 3.10 shows a dice operation on the
central cube based on the following selection criteria that involve three dimensions:
(location = “Toronto” or “Vancouver”) and (time = “Q1” or “Q2”) and (item =
“home entertainment” or “computer”).

Pivot (rotate): Pivot (also called rotate) is a visualization operation that rotates the data
axes in view in order to provide an alternative presentation of the data. Figure 3.10
shows a pivot operation where the item and location axes in a 2-D slice are rotated.
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Other examples include rotating the axes in a 3-D cube, or transforming a 3-D cube
into a series of 2-D planes.

Other OLAP operations: Some OLAP systems offer additional drilling operations. For
example, drill-across executes queries involving (i.e., across)more than one fact table.
The drill-through operation uses relational SQL facilities to drill through the bottom
level of a data cube down to its back-end relational tables.

Other OLAP operations may include ranking the top N or bottom N items in lists,
as well as computingmoving averages, growth rates, interests, internal rates of return,
depreciation, currency conversions, and statistical functions.

OLAP offers analyticalmodeling capabilities, including a calculation engine for deriv-
ing ratios, variance, and so on, and for computing measures across multiple dimensions.
It can generate summarizations, aggregations, and hierarchies at each granularity level
and at every dimension intersection. OLAP also supports functional models for forecast-
ing, trend analysis, and statistical analysis. In this context, an OLAP engine is a powerful
data analysis tool.

OLAP Systems versus Statistical Databases
Many of the characteristics of OLAP systems, such as the use of a multidimensional
data model and concept hierarchies, the association of measures with dimensions, and
the notions of roll-up and drill-down, also exist in earlier work on statistical databases
(SDBs). A statistical database is a database system that is designed to support statistical
applications. Similarities between the two types of systems are rarely discussed, mainly
due to differences in terminology and application domains.

OLAP and SDB systems, however, have distinguishing differences.While SDBs tend to
focus on socioeconomic applications, OLAP has been targeted for business applications.
Privacy issues regarding concept hierarchies are a major concern for SDBs. For example,
given summarized socioeconomic data, it is controversial to allow users to view the cor-
responding low-level data. Finally, unlike SDBs, OLAP systems are designed for handling
huge amounts of data efficiently.

3.2.7 A Starnet Query Model for Querying
Multidimensional Databases

The querying of multidimensional databases can be based on a starnet model. A starnet
model consists of radial lines emanating from a central point, where each line represents
a concept hierarchy for a dimension. Each abstraction level in the hierarchy is called a
footprint. These represent the granularities available for use by OLAP operations such
as drill-down and roll-up.

Example 3.9 Starnet. A starnet query model for the AllElectronics data warehouse is shown in
Figure 3.11. This starnet consists of four radial lines, representing concept hierarchies
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Figure 3.11 Modeling business queries: a starnet model.

for the dimensions location, customer, item, and time, respectively. Each line consists of
footprints representing abstraction levels of the dimension. For example, the time line
has four footprints: “day,” “month,” “quarter,” and “year.” A concept hierarchy may
involve a single attribute (like date for the time hierarchy) or several attributes (e.g.,
the concept hierarchy for location involves the attributes street, city, province or state,
and country). In order to examine the item sales at AllElectronics, users can roll up
along the time dimension from month to quarter, or, say, drill down along the location
dimension from country to city. Concept hierarchies can be used to generalize data
by replacing low-level values (such as “day” for the time dimension) by higher-level
abstractions (such as “year”), or to specialize data by replacing higher-level abstractions
with lower-level values.

3.3 Data Warehouse Architecture

In this section, we discuss issues regarding data warehouse architecture. Section 3.3.1
gives a general account of how to design and construct a data warehouse. Section 3.3.2
describes a three-tier data warehouse architecture. Section 3.3.3 describes back-end
tools and utilities for data warehouses. Section 3.3.4 describes the metadata repository.
Section 3.3.5 presents various types of warehouse servers for OLAP processing.
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3.3.1 Steps for the Design and Construction of Data Warehouses

This subsection presents a business analysis framework for data warehouse design. The
basic steps involved in the design process are also described.

The Design of a Data Warehouse: A Business
Analysis Framework

“What can business analysts gain from having a data warehouse?” First, having a data
warehousemay provide a competitive advantage by presenting relevant information from
which to measure performance and make critical adjustments in order to help win over
competitors. Second, a data warehouse can enhance business productivity because it is
able to quickly and efficiently gather information that accurately describes the organi-
zation. Third, a data warehouse facilitates customer relationship management because it
provides a consistent view of customers and items across all lines of business, all depart-
ments, and allmarkets. Finally, a data warehousemay bring about cost reduction by track-
ing trends, patterns, and exceptions over long periods in a consistent and reliablemanner.

To design an effective data warehouse we need to understand and analyze business
needs and construct a business analysis framework. The construction of a large and com-
plex information system can be viewed as the construction of a large and complex build-
ing, for which the owner, architect, and builder have different views. These views are
combined to form a complex framework that represents the top-down, business-driven,
or owner’s perspective, as well as the bottom-up, builder-driven, or implementor’s view
of the information system.

Four different views regarding the design of a data warehousemust be considered: the
top-down view, the data source view, the data warehouse view, and the business
query view.

The top-down view allows the selection of the relevant information necessary for
the data warehouse. This information matches the current and future business
needs.

The data source view exposes the information being captured, stored, and man-
aged by operational systems. This information may be documented at various
levels of detail and accuracy, from individual data source tables to integrated
data source tables. Data sources are often modeled by traditional data model-
ing techniques, such as the entity-relationship model or CASE (computer-aided
software engineering) tools.

The data warehouse view includes fact tables and dimension tables. It represents the
information that is stored inside the data warehouse, including precalculated totals
and counts, as well as information regarding the source, date, and time of origin,
added to provide historical context.

Finally, the business query view is the perspective of data in the data warehouse from
the viewpoint of the end user.
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Building and using a data warehouse is a complex task because it requires business
skills, technology skills, and programmanagement skills. Regarding business skills, building
a data warehouse involves understanding how such systems store andmanage their data,
how to build extractors that transfer data from the operational system to the data ware-
house, and how to build warehouse refresh software that keeps the data warehouse rea-
sonably up-to-date with the operational system’s data. Using a data warehouse involves
understanding the significance of the data it contains, as well as understanding and trans-
lating the business requirements into queries that can be satisfied by the data warehouse.
Regarding technology skills, data analysts are required to understand how to make assess-
ments from quantitative information and derive facts based on conclusions from his-
torical information in the data warehouse. These skills include the ability to discover
patterns and trends, to extrapolate trends based on history and look for anomalies or
paradigm shifts, and to present coherent managerial recommendations based on such
analysis. Finally, programmanagement skills involve the need to interface withmany tech-
nologies, vendors, and end users in order to deliver results in a timely and cost-effective
manner.

The Process of Data Warehouse Design
A data warehouse can be built using a top-down approach, a bottom-up approach, or a
combination of both. The top-down approach starts with the overall design and plan-
ning. It is useful in cases where the technology is mature and well known, and where the
business problems that must be solved are clear and well understood. The bottom-up
approach starts with experiments and prototypes. This is useful in the early stage of busi-
ness modeling and technology development. It allows an organization to move forward
at considerably less expense and to evaluate the benefits of the technology before mak-
ing significant commitments. In the combined approach, an organization can exploit
the planned and strategic nature of the top-down approach while retaining the rapid
implementation and opportunistic application of the bottom-up approach.

From the software engineering point of view, the design and construction of a data
warehousemay consist of the following steps: planning, requirements study, problem anal-
ysis, warehouse design, data integration and testing, andfinallydeployment of the dataware-
house. Large software systems can be developed using two methodologies: the waterfall
method or the spiral method. Thewaterfall method performs a structured and systematic
analysis at each step before proceeding to the next, which is like a waterfall, falling from
one step to the next. The spiral method involves the rapid generation of increasingly
functional systems, with short intervals between successive releases. This is considered
a good choice for data warehouse development, especially for data marts, because the
turnaround time is short, modifications can be done quickly, and new designs and tech-
nologies can be adapted in a timely manner.

In general, the warehouse design process consists of the following steps:

1. Choose a business process to model, for example, orders, invoices, shipments,
inventory, account administration, sales, or the general ledger. If the business
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process is organizational and involves multiple complex object collections, a data
warehouse model should be followed. However, if the process is departmental
and focuses on the analysis of one kind of business process, a data mart model
should be chosen.

2. Choose the grain of the business process. The grain is the fundamental, atomic level
of data to be represented in the fact table for this process, for example, individual
transactions, individual daily snapshots, and so on.

3. Choose the dimensions that will apply to each fact table record. Typical dimensions
are time, item, customer, supplier, warehouse, transaction type, and status.

4. Choose the measures that will populate each fact table record. Typical measures are
numeric additive quantities like dollars sold and units sold.

Because data warehouse construction is a difficult and long-term task, its imple-
mentation scope should be clearly defined. The goals of an initial data warehouse
implementation should be specific, achievable, and measurable. This involves deter-
mining the time and budget allocations, the subset of the organization that is to be
modeled, the number of data sources selected, and the number and types of depart-
ments to be served.

Once a data warehouse is designed and constructed, the initial deployment of
the warehouse includes initial installation, roll-out planning, training, and orienta-
tion. Platform upgrades and maintenance must also be considered. Data warehouse
administration includes data refreshment, data source synchronization, planning for
disaster recovery, managing access control and security, managing data growth, man-
aging database performance, and data warehouse enhancement and extension. Scope
management includes controlling the number and range of queries, dimensions, and
reports; limiting the size of the data warehouse; or limiting the schedule, budget, or
resources.

Various kinds of data warehouse design tools are available. Data warehouse devel-
opment tools provide functions to define and edit metadata repository contents (such
as schemas, scripts, or rules), answer queries, output reports, and ship metadata to
and from relational database system catalogues. Planning and analysis tools study the
impact of schema changes and of refresh performance when changing refresh rates or
time windows.

3.3.2 A Three-Tier Data Warehouse Architecture

Data warehouses often adopt a three-tier architecture, as presented in Figure 3.12.

1. The bottom tier is a warehouse database server that is almost always a relational
database system. Back-end tools and utilities are used to feed data into the bottom
tier from operational databases or other external sources (such as customer profile
information provided by external consultants). These tools and utilities perform data
extraction, cleaning, and transformation (e.g., to merge similar data from different
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Figure 3.12 A three-tier data warehousing architecture.

sources into a unified format), as well as load and refresh functions to update the
data warehouse (Section 3.3.3). The data are extracted using application program
interfaces known as gateways. A gateway is supported by the underlying DBMS and
allows client programs to generate SQL code to be executed at a server. Examples
of gateways include ODBC (Open Database Connection) and OLEDB (Open Link-
ing and Embedding for Databases) by Microsoft and JDBC (Java Database Connec-
tion). This tier also contains a metadata repository, which stores information about
the data warehouse and its contents. The metadata repository is further described in
Section 3.3.4.

2. The middle tier is an OLAP server that is typically implemented using either
(1) a relational OLAP (ROLAP) model, that is, an extended relational DBMS that
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maps operations on multidimensional data to standard relational operations; or
(2) a multidimensional OLAP (MOLAP) model, that is, a special-purpose server
that directly implements multidimensional data and operations. OLAP servers are
discussed in Section 3.3.5.

3. The top tier is a front-end client layer, which contains query and reporting tools,
analysis tools, and/or data mining tools (e.g., trend analysis, prediction, and so on).

From the architecture point of view, there are three data warehousemodels: the enter-
prise warehouse, the data mart, and the virtual warehouse.

Enterprise warehouse: An enterprise warehouse collects all of the information about
subjects spanning the entire organization. It provides corporate-wide data inte-
gration, usually from one or more operational systems or external information
providers, and is cross-functional in scope. It typically contains detailed data as
well as summarized data, and can range in size from a few gigabytes to hundreds
of gigabytes, terabytes, or beyond. An enterprise data warehouse may be imple-
mented on traditional mainframes, computer superservers, or parallel architecture
platforms. It requires extensive business modeling and may take years to design
and build.

Data mart: A data mart contains a subset of corporate-wide data that is of value to a
specific group of users. The scope is confined to specific selected subjects. For exam-
ple, a marketing data mart may confine its subjects to customer, item, and sales. The
data contained in data marts tend to be summarized.
Data marts are usually implemented on low-cost departmental servers that are
UNIX/LINUX- or Windows-based. The implementation cycle of a data mart is
more likely to be measured in weeks rather than months or years. However, it
may involve complex integration in the long run if its design and planning were
not enterprise-wide.
Depending on the source of data, data marts can be categorized as independent or
dependent. Independent datamarts are sourced from data captured from one ormore
operational systems or external information providers, or from data generated locally
within a particular department or geographic area.Dependent data marts are sourced
directly from enterprise data warehouses.

Virtual warehouse: A virtual warehouse is a set of views over operational databases. For
efficient query processing, only some of the possible summary views may be materi-
alized. A virtual warehouse is easy to build but requires excess capacity on operational
database servers.

“What are the pros and cons of the top-down and bottom-up approaches to data ware-
house development?” The top-down development of an enterprise warehouse serves as
a systematic solution and minimizes integration problems. However, it is expensive,
takes a long time to develop, and lacks flexibility due to the difficulty in achieving
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consistency and consensus for a common data model for the entire organization. The
bottom-up approach to the design, development, and deployment of independent
data marts provides flexibility, low cost, and rapid return of investment. It, however,
can lead to problems when integrating various disparate data marts into a consistent
enterprise data warehouse.

A recommended method for the development of data warehouse systems is to
implement the warehouse in an incremental and evolutionary manner, as shown in
Figure 3.13. First, a high-level corporate data model is defined within a reasonably
short period (such as one or two months) that provides a corporate-wide, consistent,
integrated view of data among different subjects and potential usages. This high-level
model, although it will need to be refined in the further development of enterprise
data warehouses and departmental data marts, will greatly reduce future integration
problems. Second, independent data marts can be implemented in parallel with
the enterprise warehouse based on the same corporate data model set as above.
Third, distributed data marts can be constructed to integrate different data marts via
hub servers. Finally, a multitier data warehouse is constructed where the enterprise
warehouse is the sole custodian of all warehouse data, which is then distributed to
the various dependent data marts.

Enterprise�
data�

warehouse

Multitier�
data�

warehouse

Distributed�
data marts

Data �
mart

Define a high-level corporate data model

Data �
mart

Model  refinement Model  refinement

Figure 3.13 A recommended approach for data warehouse development.
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3.3.3 Data Warehouse Back-End Tools and Utilities

Data warehouse systems use back-end tools and utilities to populate and refresh their
data (Figure 3.12). These tools and utilities include the following functions:

Data extraction, which typically gathers data frommultiple, heterogeneous, and exter-
nal sources

Data cleaning, which detects errors in the data and rectifies them when possible

Data transformation, which converts data from legacy or host format to warehouse
format

Load, which sorts, summarizes, consolidates, computes views, checks integrity, and
builds indices and partitions

Refresh, which propagates the updates from the data sources to the warehouse

Besides cleaning, loading, refreshing, andmetadata definition tools, data warehouse sys-
tems usually provide a good set of data warehouse management tools.

Data cleaning and data transformation are important steps in improving the quality
of the data and, subsequently, of the data mining results. They are described in Chapter 2
onData Preprocessing. Because we aremostly interested in the aspects of data warehous-
ing technology related to data mining, we will not get into the details of the remaining
tools and recommend interested readers to consult books dedicated to data warehousing
technology.

3.3.4 Metadata Repository

Metadata are data about data.When used in a data warehouse, metadata are the data that
define warehouse objects. Figure 3.12 showed a metadata repository within the bottom
tier of the data warehousing architecture. Metadata are created for the data names and
definitions of the given warehouse. Additional metadata are created and captured for
timestamping any extracted data, the source of the extracted data, and missing fields
that have been added by data cleaning or integration processes.

A metadata repository should contain the following:

A description of the structure of the data warehouse, which includes the warehouse
schema, view, dimensions, hierarchies, and derived data definitions, as well as data
mart locations and contents

Operational metadata, which include data lineage (history of migrated data and the
sequence of transformations applied to it), currency of data (active, archived, or
purged), and monitoring information (warehouse usage statistics, error reports, and
audit trails)

The algorithms used for summarization, which include measure and dimension defi-
nition algorithms, data on granularity, partitions, subject areas, aggregation, summa-
rization, and predefined queries and reports
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The mapping from the operational environment to the data warehouse, which includes
source databases and their contents, gateway descriptions, data partitions, data extrac-
tion, cleaning, transformation rules and defaults, data refresh and purging rules, and
security (user authorization and access control)

Data related to system performance, which include indices and profiles that improve
data access and retrieval performance, in addition to rules for the timing and schedul-
ing of refresh, update, and replication cycles

Business metadata, which include business terms and definitions, data ownership
information, and charging policies

A data warehouse contains different levels of summarization, of which metadata is
one type. Other types include current detailed data (which are almost always on disk),
older detailed data (which are usually on tertiary storage), lightly summarized data and
highly summarized data (which may or may not be physically housed).

Metadata play a very different role than other data warehouse data and are important
for many reasons. For example, metadata are used as a directory to help the decision
support system analyst locate the contents of the data warehouse, as a guide to the map-
ping of data when the data are transformed from the operational environment to the
data warehouse environment, and as a guide to the algorithms used for summarization
between the current detailed data and the lightly summarized data, and between the
lightly summarized data and the highly summarized data. Metadata should be stored
and managed persistently (i.e., on disk).

3.3.5 Types of OLAP Servers: ROLAP versus MOLAP
versus HOLAP

Logically, OLAP servers present business users with multidimensional data from data
warehouses or data marts, without concerns regarding how or where the data are stored.
However, the physical architecture and implementation of OLAP servers must consider
data storage issues. Implementations of a warehouse server for OLAP processing include
the following:

Relational OLAP (ROLAP) servers: These are the intermediate servers that stand in
between a relational back-end server and client front-end tools. They use a relational
or extended-relational DBMS to store andmanagewarehouse data, andOLAPmiddle-
ware to support missing pieces. ROLAP servers include optimization for each DBMS
back end, implementation of aggregation navigation logic, and additional tools and
services. ROLAP technology tends to have greater scalability than MOLAP technol-
ogy. The DSS server of Microstrategy, for example, adopts the ROLAP approach.

Multidimensional OLAP (MOLAP) servers: These servers support multidimensional
views of data through array-based multidimensional storage engines. They mapmulti-
dimensional views directly to data cube array structures. The advantage of using a data
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cube is that it allows fast indexing to precomputed summarized data. Notice that with
multidimensional data stores, the storageutilizationmaybe low if thedata set is sparse.
In such cases, sparse matrix compression techniques should be explored (Chapter 4).
Many MOLAP servers adopt a two-level storage representation to handle dense and
sparse data sets: denser subcubes are identified and stored as array structures, whereas
sparse subcubes employ compression technology for efficient storage utilization.

Hybrid OLAP (HOLAP) servers: The hybrid OLAP approach combines ROLAP and
MOLAP technology, benefiting from the greater scalability of ROLAP and the faster
computation of MOLAP. For example, a HOLAP server may allow large volumes
of detail data to be stored in a relational database, while aggregations are kept in a
separate MOLAP store. The Microsoft SQL Server 2000 supports a hybrid OLAP
server.

Specialized SQL servers: Tomeet the growing demand of OLAP processing in relational
databases, some database system vendors implement specialized SQL servers that pro-
vide advanced query language and query processing support for SQL queries over star
and snowflake schemas in a read-only environment.

“How are data actually stored in ROLAP and MOLAP architectures?” Let’s first look
at ROLAP. As its name implies, ROLAP uses relational tables to store data for on-line
analytical processing. Recall that the fact table associated with a base cuboid is referred
to as a base fact table. The base fact table stores data at the abstraction level indicated by
the join keys in the schema for the given data cube. Aggregated data can also be stored
in fact tables, referred to as summary fact tables. Some summary fact tables store both
base fact table data and aggregated data, as in Example 3.10. Alternatively, separate sum-
mary fact tables can be used for each level of abstraction, to store only aggregated data.

Example 3.10 A ROLAP data store. Table 3.4 shows a summary fact table that contains both base fact
data and aggregated data. The schema of the table is “�record identifier (RID), item, . . . ,
day, month, quarter, year, dollars sold�”, where day, month, quarter, and year define the
date of sales, and dollars sold is the sales amount. Consider the tuples with anRID of 1001
and 1002, respectively. The data of these tuples are at the base fact level, where the date
of sales is October 15, 2003, and October 23, 2003, respectively. Consider the tuple with
an RID of 5001. This tuple is at a more general level of abstraction than the tuples 1001

Table 3.4 Single table for base and summary facts.

RID item . . . day month quarter year dollars sold

1001 TV . . . 15 10 Q4 2003 250.60

1002 TV . . . 23 10 Q4 2003 175.00

. . . . . . . . . . . . . . . . . . . . . . . .

5001 TV . . . all 10 Q4 2003 45,786.08

. . . . . . . . . . . . . . . . . . . . . . . .
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and 1002. The day value has been generalized to all, so that the corresponding time value
is October 2003. That is, the dollars sold amount shown is an aggregation representing
the entire month of October 2003, rather than just October 15 or 23, 2003. The special
value all is used to represent subtotals in summarized data.

MOLAP uses multidimensional array structures to store data for on-line analytical
processing. This structure is discussed in the following section on data warehouse imple-
mentation and, in greater detail, in Chapter 4.

Most datawarehouse systems adopt a client-server architecture. A relational data store
always resides at the data warehouse/datamart server site. Amultidimensional data store
can reside at either the database server site or the client site.

3.4 Data Warehouse Implementation

Data warehouses contain huge volumes of data. OLAP servers demand that decision
support queries be answered in the order of seconds. Therefore, it is crucial for data ware-
house systems to support highly efficient cube computation techniques, access methods,
and query processing techniques. In this section, we present an overview of methods for
the efficient implementation of data warehouse systems.

3.4.1 Efficient Computation of Data Cubes

At the core ofmultidimensional data analysis is the efficient computation of aggregations
across many sets of dimensions. In SQL terms, these aggregations are referred to as
group-by’s. Each group-by can be represented by a cuboid, where the set of group-by’s
forms a lattice of cuboids defining a data cube. In this section, we explore issues relating
to the efficient computation of data cubes.

The compute cube Operator and the
Curse of Dimensionality

One approach to cube computation extends SQL so as to include a compute cube oper-
ator. The compute cube operator computes aggregates over all subsets of the dimensions
specified in the operation. This can require excessive storage space, especially for large
numbers of dimensions.We start with an intuitive look at what is involved in the efficient
computation of data cubes.

Example 3.11 A data cube is a lattice of cuboids. Suppose that you would like to create a data cube for
AllElectronics sales that contains the following: city, item, year, and sales in dollars. You
would like to be able to analyze the data, with queries such as the following:

“Compute the sum of sales, grouping by city and item.”

“Compute the sum of sales, grouping by city.”

“Compute the sum of sales, grouping by item.”
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What is the total number of cuboids, or group-by’s, that can be computed for this
data cube? Taking the three attributes, city, item, and year, as the dimensions for the
data cube, and sales in dollars as the measure, the total number of cuboids, or group-
by’s, that can be computed for this data cube is 23 = 8. The possible group-by’s are
the following: {(city, item, year), (city, item), (city, year), (item, year), (city), (item),
(year), ()}, where () means that the group-by is empty (i.e., the dimensions are not
grouped). These group-by’s form a lattice of cuboids for the data cube, as shown
in Figure 3.14. The base cuboid contains all three dimensions, city, item, and year.
It can return the total sales for any combination of the three dimensions. The apex
cuboid, or 0-D cuboid, refers to the case where the group-by is empty. It contains
the total sum of all sales. The base cuboid is the least generalized (most specific) of
the cuboids. The apex cuboid is the most generalized (least specific) of the cuboids,
and is often denoted as all. If we start at the apex cuboid and explore downward in
the lattice, this is equivalent to drilling down within the data cube. If we start at the
base cuboid and explore upward, this is akin to rolling up.

An SQL query containing no group-by, such as “compute the sum of total sales,” is a
zero-dimensional operation. An SQL query containing one group-by, such as “compute
the sum of sales, group by city,” is a one-dimensional operation. A cube operator on
n dimensions is equivalent to a collection of group by statements, one for each subset

(item) (year)(city)

()

(item, year)

(city, item, year)

(city, item) (city, year)

O-D (apex) cuboid

1-D cuboids

2-D cuboids

3-D  (base) cuboid

Figure 3.14 Lattice of cuboids, making up a 3-D data cube. Each cuboid represents a different group-by.
The base cuboid contains the three dimensions city, item, and year.
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of the n dimensions. Therefore, the cube operator is the n-dimensional generalization of
the group by operator.

Based on the syntax of DMQL introduced in Section 3.2.3, the data cube in
Example 3.11 could be defined as

define cube sales cube [city, item, year]: sum(sales in dollars)

For a cube with n dimensions, there are a total of 2n cuboids, including the base
cuboid. A statement such as

compute cube sales cube

would explicitly instruct the system to compute the sales aggregate cuboids for all of the
eight subsets of the set {city, item, year}, including the empty subset. A cube computation
operator was first proposed and studied by Gray et al. [GCB+97].

On-line analytical processingmayneed to access different cuboids for different queries.
Therefore, it may seem like a good idea to compute all or at least some of the cuboids
in a data cube in advance. Precomputation leads to fast response time and avoids some
redundant computation. Most, if not all, OLAP products resort to some degree of pre-
computation of multidimensional aggregates.

Amajor challenge related to this precomputation, however, is that the required storage
space may explode if all of the cuboids in a data cube are precomputed, especially when
the cube has many dimensions. The storage requirements are even more excessive when
many of the dimensions have associated concept hierarchies, each with multiple levels.
This problem is referred to as the curse of dimensionality. The extent of the curse of
dimensionality is illustrated below.

“How many cuboids are there in an n-dimensional data cube?” If there were no
hierarchies associated with each dimension, then the total number of cuboids for
an n-dimensional data cube, as we have seen above, is 2n. However, in practice,
many dimensions do have hierarchies. For example, the dimension time is usually not
explored at only one conceptual level, such as year, but rather at multiple conceptual
levels, such as in the hierarchy “day < month < quarter < year”. For an n-dimensional
data cube, the total number of cuboids that can be generated (including the cuboids
generated by climbing up the hierarchies along each dimension) is

Total number o f cuboids =
n

∏
i=1

(Li +1), (3.1)

where Li is the number of levels associated with dimension i. One is added to Li in
Equation (3.1) to include the virtual top level, all. (Note that generalizing to all is equiv-
alent to the removal of the dimension.) This formula is based on the fact that, at most,
one abstraction level in each dimension will appear in a cuboid. For example, the time
dimension as specified above has 4 conceptual levels, or 5 if we include the virtual level all.
If the cube has 10 dimensions and each dimension has 5 levels (including all), the total
number of cuboids that can be generated is 510 ≈ 9.8× 106. The size of each cuboid
also depends on the cardinality (i.e., number of distinct values) of each dimension. For
example, if the AllElectronics branch in each city sold every item, there would be
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|city| × |item| tuples in the city-item group-by alone. As the number of dimensions,
number of conceptual hierarchies, or cardinality increases, the storage space required
for many of the group-by’s will grossly exceed the (fixed) size of the input relation.

By now, you probably realize that it is unrealistic to precompute and materialize all
of the cuboids that can possibly be generated for a data cube (or from a base cuboid). If
there are many cuboids, and these cuboids are large in size, a more reasonable option is
partial materialization, that is, to materialize only some of the possible cuboids that can
be generated.

Partial Materialization: Selected
Computation of Cuboids

There are three choices for data cube materialization given a base cuboid:

1. No materialization: Do not precompute any of the “nonbase” cuboids. This leads to
computing expensive multidimensional aggregates on the fly, which can be extremely
slow.

2. Fullmaterialization: Precompute all of the cuboids. The resulting lattice of computed
cuboids is referred to as the full cube. This choice typically requires huge amounts of
memory space in order to store all of the precomputed cuboids.

3. Partial materialization: Selectively compute a proper subset of the whole set of possi-
ble cuboids. Alternatively, we may compute a subset of the cube, which contains only
those cells that satisfy some user-specified criterion, such as where the tuple count of
each cell is above some threshold.Wewill use the term subcube to refer to the latter case,
where only some of the cells may be precomputed for various cuboids. Partial materi-
alization represents an interesting trade-off between storage space and response time.

The partial materialization of cuboids or subcubes should consider three factors:
(1) identify the subset of cuboids or subcubes to materialize; (2) exploit the mate-
rialized cuboids or subcubes during query processing; and (3) efficiently update the
materialized cuboids or subcubes during load and refresh.

The selection of the subset of cuboids or subcubes to materialize should take into
account the queries in the workload, their frequencies, and their accessing costs. In addi-
tion, it should considerworkloadcharacteristics, the cost for incremental updates, and the
total storage requirements. The selectionmust also consider the broad context of physical
database design, such as the generation and selection of indices. Several OLAP products
have adopted heuristic approaches for cuboid and subcube selection. Apopular approach
is tomaterialize the set of cuboids onwhichother frequently referenced cuboids are based.
Alternatively, we can compute an iceberg cube, which is a data cube that stores only those
cube cells whose aggregate value (e.g., count) is above someminimumsupport threshold.
Another common strategy is to materialize a shell cube. This involves precomputing the
cuboids for only a small number of dimensions (such as 3 to 5) of a data cube. Queries
on additional combinations of the dimensions can be computed on-the-fly. Because our
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aim in this chapter is to provide a solid introduction and overview of data warehousing
for data mining, we defer our detailed discussion of cuboid selection and computation
to Chapter 4, which studies data warehouse and OLAP implementation in greater depth.

Once the selected cuboids have beenmaterialized, it is important to take advantage of
them during query processing. This involves several issues, such as how to determine the
relevant cuboid(s) from among the candidate materialized cuboids, how to use available
index structures on the materialized cuboids, and how to transform the OLAP opera-
tions onto the selected cuboid(s). These issues are discussed in Section 3.4.3 as well as in
Chapter 4.

Finally, during load and refresh, the materialized cuboids should be updated effi-
ciently. Parallelism and incremental update techniques for this operation should be
explored.

3.4.2 Indexing OLAP Data

To facilitate efficient data accessing, most data warehouse systems support index struc-
tures and materialized views (using cuboids). General methods to select cuboids for
materialization were discussed in the previous section. In this section, we examine how
to index OLAP data by bitmap indexing and join indexing.

The bitmap indexing method is popular in OLAP products because it allows quick
searching in data cubes. The bitmap index is an alternative representation of the
record ID (RID) list. In the bitmap index for a given attribute, there is a distinct bit
vector, Bv, for each value v in the domain of the attribute. If the domain of a given
attribute consists of n values, then n bits are needed for each entry in the bitmap index
(i.e., there are n bit vectors). If the attribute has the value v for a given row in the data
table, then the bit representing that value is set to 1 in the corresponding row of the
bitmap index. All other bits for that row are set to 0.

Example 3.12 Bitmap indexing. In theAllElectronics data warehouse, suppose the dimension item at the
top level has four values (representing item types): “home entertainment,” “computer,”
“phone,” and “security.” Each value (e.g., “computer”) is represented by a bit vector in
the bitmap index table for item. Suppose that the cube is stored as a relation table with
100,000 rows. Because the domain of item consists of four values, the bitmap index table
requires four bit vectors (or lists), each with 100,000 bits. Figure 3.15 shows a base (data)
table containing the dimensions item and city, and its mapping to bitmap index tables
for each of the dimensions.

Bitmap indexing is advantageous compared to hash and tree indices. It is especially
useful for low-cardinality domains because comparison, join, and aggregation opera-
tions are then reduced to bit arithmetic, which substantially reduces the processing time.
Bitmap indexing leads to significant reductions in space and I/O since a string of charac-
ters can be represented by a single bit. For higher-cardinality domains, the method can
be adapted using compression techniques.

The join indexingmethod gained popularity from its use in relational database query
processing. Traditional indexingmaps the value in a given column to a list of rows having
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Figure 3.15 Indexing OLAP data using bitmap indices.

that value. In contrast, join indexing registers the joinable rows of two relations from a
relational database. For example, if two relations R(RID, A) and S(B, SID) join on the
attributes A and B, then the join index record contains the pair (RID, SID), where RID
and SID are record identifiers from the R and S relations, respectively. Hence, the join
index records can identify joinable tuples without performing costly join operations. Join
indexing is especially useful for maintaining the relationship between a foreign key3 and
its matching primary keys, from the joinable relation.

The star schema model of data warehouses makes join indexing attractive for cross-
table search, because the linkage between a fact table and its corresponding dimension
tables comprises the foreign key of the fact table and the primary key of the dimen-
sion table. Join indexingmaintains relationships between attribute values of a dimension
(e.g., within a dimension table) and the corresponding rows in the fact table. Join indices
may span multiple dimensions to form composite join indices. We can use join indices
to identify subcubes that are of interest.

Example 3.13 Join indexing. In Example 3.4, we defined a star schema for AllElectronics of the form
“sales star [time, item, branch, location]: dollars sold = sum (sales in dollars)”. An exam-
ple of a join index relationship between the sales fact table and the dimension tables for
location and item is shown in Figure 3.16. For example, the “Main Street” value in the
location dimension table joins with tuples T57, T238, and T884 of the sales fact table.
Similarly, the “Sony-TV” value in the item dimension table joins with tuples T57 and
T459 of the sales fact table. The corresponding join index tables are shown in Figure 3.17.

3A set of attributes in a relation schema that forms a primary key for another relation schema is called
a foreign key.
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Figure 3.16 Linkages between a sales fact table and dimension tables for location and item.

Figure 3.17 Join index tables based on the linkages between the sales fact table and dimension tables for
location and item shown in Figure 3.16.

Suppose that there are 360 time values, 100 items, 50 branches, 30 locations, and
10 million sales tuples in the sales star data cube. If the sales fact table has recorded
sales for only 30 items, the remaining 70 items will obviously not participate in joins.
If join indices are not used, additional I/Os have to be performed to bring the joining
portions of the fact table and dimension tables together.
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To further speed up query processing, the join indexing and bitmap indexingmethods
can be integrated to form bitmapped join indices.

3.4.3 Efficient Processing of OLAP Queries

The purpose of materializing cuboids and constructing OLAP index structures is to
speed up query processing in data cubes. Given materialized views, query processing
should proceed as follows:

1. Determine which operations should be performed on the available cuboids: This
involves transforming any selection, projection, roll-up (group-by), and drill-down
operations specified in the query into corresponding SQL and/or OLAP operations.
For example, slicing and dicing a data cube may correspond to selection and/or pro-
jection operations on a materialized cuboid.

2. Determinetowhichmaterializedcuboid(s) therelevantoperationsshouldbeapplied:
This involves identifying all of the materialized cuboids that may potentially be used
to answer the query, pruning the above set using knowledge of “dominance” relation-
ships among the cuboids, estimating the costs of using the remaining materialized
cuboids, and selecting the cuboid with the least cost.

Example 3.14 OLAPquery processing. Suppose that we define a data cube forAllElectronics of the form
“sales cube [time, item, location]: sum(sales in dollars)”. The dimension hierarchies used
are “day < month < quarter < year” for time, “item name < brand < type” for item, and
“street < city < province or state < country” for location.

Suppose that the query to be processed is on {brand, province or state}, with the
selection constant “year = 2004”. Also, suppose that there are four materialized cuboids
available, as follows:

cuboid 1: {year, item name, city}
cuboid 2: {year, brand, country}
cuboid 3: {year, brand, province or state}
cuboid 4: {item name, province or state} where year = 2004

“Which of the above four cuboids should be selected to process the query?” Finer-
granularity data cannot be generated from coarser-granularity data. Therefore, cuboid 2
cannot be used because country is a more general concept than province or state.
Cuboids 1, 3, and 4 can be used to process the query because (1) they have the same set
or a superset of the dimensions in the query, (2) the selection clause in the query can
imply the selection in the cuboid, and (3) the abstraction levels for the item and loca-
tion dimensions in these cuboids are at a finer level than brand and province or state,
respectively.

“How would the costs of each cuboid compare if used to process the query?” It is
likely that using cuboid 1 would cost the most because both item name and city are
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at a lower level than the brand and province or state concepts specified in the query.
If there are not many year values associated with items in the cube, but there are
several item names for each brand, then cuboid 3 will be smaller than cuboid 4, and
thus cuboid 3 should be chosen to process the query. However, if efficient indices
are available for cuboid 4, then cuboid 4 may be a better choice. Therefore, some
cost-based estimation is required in order to decide which set of cuboids should be
selected for query processing.

Because the storage model of a MOLAP server is an n-dimensional array, the front-
end multidimensional queries are mapped directly to server storage structures, which
provide direct addressing capabilities. The straightforward array representation of the
data cube has good indexing properties, but has poor storage utilization when the data
are sparse. For efficient storage and processing, sparsematrix and data compression tech-
niques should therefore be applied. The details of several such methods of cube compu-
tation are presented in Chapter 4.

The storage structures used by dense and sparse arrays may differ, making it advan-
tageous to adopt a two-level approach to MOLAP query processing: use array structures
for dense arrays, and sparse matrix structures for sparse arrays. The two-dimensional
dense arrays can be indexed by B-trees.

To process a query in MOLAP, the dense one- and two-dimensional arrays must first
be identified. Indices are then built to these arrays using traditional indexing structures.
The two-level approach increases storage utilizationwithout sacrificing direct addressing
capabilities.

“Are thereanyother strategies foransweringqueriesquickly?”Somestrategies foranswer-
ingqueries quickly concentrateonproviding intermediate feedback to theusers. For exam-
ple, inon-lineaggregation, adatamining systemcandisplay“what it knows so far” instead
ofwaiting until the query is fully processed. Such an approximate answer to the given data
mining query is periodically refreshed and refined as the computation process continues.
Confidence intervals are associatedwith each estimate, providing the userwith additional
feedback regarding the reliability of the answer so far. This promotes interactivity with
the system—the user gains insight as to whether or not he or she is probing in the “right”
direction without having to wait until the end of the query. While on-line aggregation
does not improve the total time to answer a query, the overall datamining process should
be quicker due to the increased interactivity with the system.

Another approach is to employ top N queries. Suppose that you are interested in find-
ing only the best-selling items among the millions of items sold at AllElectronics. Rather
than waiting to obtain a list of all store items, sorted in decreasing order of sales, you
would like to see only the top N. Using statistics, query processing can be optimized to
return the top N items, rather than the whole sorted list. This results in faster response
time while helping to promote user interactivity and reduce wasted resources.

The goal of this section was to provide an overview of data warehouse implementa-
tion. Chapter 4 presents amore advanced treatment of this topic. It examines the efficient
computation of data cubes and processing of OLAP queries in greater depth, providing
detailed algorithms.
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3.5 From Data Warehousing to Data Mining

“How do data warehousing and OLAP relate to data mining?” In this section, we study the
usage of data warehousing for information processing, analytical processing, and data
mining.We also introduce on-line analytical mining (OLAM), a powerful paradigm that
integrates OLAP with data mining technology.

3.5.1 Data Warehouse Usage

Data warehouses and data marts are used in a wide range of applications. Business
executives use the data in data warehouses and data marts to perform data analysis and
make strategic decisions. In many firms, data warehouses are used as an integral part
of a plan-execute-assess “closed-loop” feedback system for enterprise management.
Data warehouses are used extensively in banking and financial services, consumer
goods and retail distribution sectors, and controlled manufacturing, such as demand-
based production.

Typically, the longer a data warehouse has been in use, the more it will have evolved.
This evolution takes place throughout a number of phases. Initially, the data warehouse
is mainly used for generating reports and answering predefined queries. Progressively, it
is used to analyze summarized and detailed data, where the results are presented in the
form of reports and charts. Later, the data warehouse is used for strategic purposes, per-
forming multidimensional analysis and sophisticated slice-and-dice operations. Finally,
the data warehouse may be employed for knowledge discovery and strategic decision
making using data mining tools. In this context, the tools for data warehousing can be
categorized into access and retrieval tools, database reporting tools, data analysis tools, and
data mining tools.

Business users need to have the means to know what exists in the data warehouse
(through metadata), how to access the contents of the data warehouse, how to examine
the contents using analysis tools, and how to present the results of such analysis.

There are three kinds of data warehouse applications: information processing, analyt-
ical processing, and data mining:

Information processing supports querying, basic statistical analysis, and reporting
using crosstabs, tables, charts, or graphs. A current trend in data warehouse infor-
mation processing is to construct low-cost Web-based accessing tools that are then
integrated with Web browsers.

Analytical processing supports basic OLAP operations, including slice-and-dice,
drill-down, roll-up, and pivoting. It generally operates on historical data in both sum-
marized and detailed forms. The major strength of on-line analytical processing over
information processing is the multidimensional data analysis of data warehouse data.

Data mining supports knowledge discovery by finding hidden patterns and associa-
tions, constructing analytical models, performing classification and prediction, and
presenting the mining results using visualization tools.
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“How does data mining relate to information processing and on-line analytical
processing?” Information processing, based onqueries, can finduseful information.How-
ever, answers to such queries reflect the information directly stored in databases or com-
putable by aggregate functions. They do not reflect sophisticated patterns or regularities
buried in the database. Therefore, information processing is not data mining.

On-line analytical processing comes a step closer to data mining because it can
derive information summarized at multiple granularities from user-specified subsets
of a data warehouse. Such descriptions are equivalent to the class/concept descrip-
tions discussed in Chapter 1. Because data mining systems can also mine generalized
class/concept descriptions, this raises some interesting questions: “Do OLAP systems
perform data mining? Are OLAP systems actually data mining systems?”

The functionalities of OLAP and data mining can be viewed as disjoint: OLAP is
a data summarization/aggregation tool that helps simplify data analysis, while data
mining allows the automated discovery of implicit patterns and interesting knowledge
hidden in large amounts of data. OLAP tools are targeted toward simplifying and
supporting interactive data analysis, whereas the goal of data mining tools is to
automate as much of the process as possible, while still allowing users to guide the
process. In this sense, data mining goes one step beyond traditional on-line analytical
processing.

An alternative and broader view of data mining may be adopted in which data
mining covers both data description and data modeling. Because OLAP systems can
present general descriptions of data from data warehouses, OLAP functions are essen-
tially for user-directed data summary and comparison (by drilling, pivoting, slicing,
dicing, and other operations). These are, though limited, data mining functionalities.
Yet according to this view, data mining covers a much broader spectrum than simple
OLAP operations because it performs not only data summary and comparison but
also association, classification, prediction, clustering, time-series analysis, and other
data analysis tasks.

Data mining is not confined to the analysis of data stored in data warehouses. It may
analyze data existing at more detailed granularities than the summarized data provided
in a data warehouse. It may also analyze transactional, spatial, textual, and multimedia
data that are difficult to model with current multidimensional database technology. In
this context, data mining covers a broader spectrum than OLAP with respect to data
mining functionality and the complexity of the data handled.

Because data mining involves more automated and deeper analysis than OLAP,
data mining is expected to have broader applications. Data mining can help busi-
ness managers find and reach more suitable customers, as well as gain critical
business insights that may help drive market share and raise profits. In addi-
tion, data mining can help managers understand customer group characteristics
and develop optimal pricing strategies accordingly, correct item bundling based
not on intuition but on actual item groups derived from customer purchase pat-
terns, reduce promotional spending, and at the same time increase the overall net
effectiveness of promotions.
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3.5.2 From On-Line Analytical Processing to
On-Line Analytical Mining

In the field of data mining, substantial research has been performed for data mining on
various platforms, including transaction databases, relational databases, spatial databases,
text databases, time-series databases, flat files, data warehouses, and so on.

On-line analytical mining (OLAM) (also called OLAP mining) integrates on-line
analytical processing (OLAP) with data mining and mining knowledge in multidi-
mensional databases. Among the many different paradigms and architectures of data
mining systems, OLAM is particularly important for the following reasons:

High quality of data in data warehouses: Most data mining tools need to work
on integrated, consistent, and cleaned data, which requires costly data clean-
ing, data integration, and data transformation as preprocessing steps. A data
warehouse constructed by such preprocessing serves as a valuable source of high-
quality data for OLAP as well as for data mining. Notice that data mining may
also serve as a valuable tool for data cleaning and data integration as well.

Available information processing infrastructure surrounding data warehouses:
Comprehensive information processing and data analysis infrastructures have been
or will be systematically constructed surrounding data warehouses, which include
accessing, integration, consolidation, and transformation of multiple heterogeneous
databases, ODBC/OLE DB connections, Web-accessing and service facilities, and
reporting and OLAP analysis tools. It is prudent to make the best use of the
available infrastructures rather than constructing everything from scratch.

OLAP-based exploratory data analysis: Effective data mining needs exploratory
data analysis. A user will often want to traverse through a database, select por-
tions of relevant data, analyze them at different granularities, and present knowl-
edge/results in different forms. On-line analytical mining provides facilities for
data mining on different subsets of data and at different levels of abstraction,
by drilling, pivoting, filtering, dicing, and slicing on a data cube and on some
intermediate data mining results. This, together with data/knowledge visualization
tools, will greatly enhance the power and flexibility of exploratory data mining.

On-line selection of data mining functions: Often a user may not know what
kinds of knowledge she would like to mine. By integrating OLAP with multiple
data mining functions, on-line analytical mining provides users with the flexibility
to select desired data mining functions and swap data mining tasks dynamically.

Architecture for On-Line Analytical Mining
An OLAM server performs analytical mining in data cubes in a similar manner as an
OLAP server performs on-line analytical processing. An integrated OLAM and OLAP
architecture is shown in Figure 3.18, where the OLAM and OLAP servers both accept
user on-line queries (or commands) via a graphical user interface API and work with
the data cube in the data analysis via a cube API. A metadata directory is used to
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Figure 3.18 An integrated OLAM and OLAP architecture.

guide the access of the data cube. The data cube can be constructed by accessing
and/or integrating multiple databases via an MDDB API and/or by filtering a data
warehouse via a database API that may support OLE DB or ODBC connections.
Since an OLAM server may perform multiple data mining tasks, such as concept
description, association, classification, prediction, clustering, time-series analysis, and
so on, it usually consists of multiple integrated data mining modules and is more
sophisticated than an OLAP server.
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Chapter 4 describes data warehouses on a finer level by exploring implementation
issues such as data cube computation, OLAP query answering strategies, and methods
of generalization. The chapters following it are devoted to the study of data min-
ing techniques. As we have seen, the introduction to data warehousing and OLAP
technology presented in this chapter is essential to our study of data mining. This
is because data warehousing provides users with large amounts of clean, organized,
and summarized data, which greatly facilitates data mining. For example, rather than
storing the details of each sales transaction, a data warehouse may store a summary
of the transactions per item type for each branch or, summarized to a higher level,
for each country. The capability of OLAP to provide multiple and dynamic views
of summarized data in a data warehouse sets a solid foundation for successful data
mining.

Moreover, we also believe that data mining should be a human-centered process.
Rather than asking a data mining system to generate patterns and knowledge automat-
ically, a user will often need to interact with the system to perform exploratory data
analysis.OLAPsets agoodexample for interactivedataanalysis andprovides thenecessary
preparations for exploratory datamining. Consider the discovery of association patterns,
for example. Instead of mining associations at a primitive (i.e., low) data level among
transactions, users should be allowed to specify roll-up operations along any dimension.
For example, a usermay like to roll up on the item dimension to go from viewing the data
for particular TV sets that were purchased to viewing the brands of these TVs, such as
SONY or Panasonic. Users may also navigate from the transaction level to the customer
level or customer-type level in the search for interesting associations. Such an OLAP-
style of data mining is characteristic of OLAP mining. In our study of the principles of
data mining in this book, we place particular emphasis on OLAP mining, that is, on the
integration of data mining and OLAP technology.

3.6 Summary

A data warehouse is a subject-oriented, integrated, time-variant, and nonvolatile
collection of data organized in support of management decision making. Several
factors distinguish data warehouses from operational databases. Because the two
systems provide quite different functionalities and require different kinds of data,
it is necessary to maintain data warehouses separately from operational databases.

A multidimensional data model is typically used for the design of corporate data
warehouses and departmental data marts. Such a model can adopt a star schema,
snowflake schema, or fact constellation schema. The core of the multidimensional
model is the data cube, which consists of a large set of facts (or measures) and a
number of dimensions. Dimensions are the entities or perspectives with respect to
which an organization wants to keep records and are hierarchical in nature.

A data cube consists of a lattice of cuboids, each corresponding to a different
degree of summarization of the given multidimensional data.
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Concept hierarchies organize the values of attributes or dimensions into gradual
levels of abstraction. They are useful in mining at multiple levels of abstraction.

On-line analytical processing (OLAP) can be performed in data warehouses/marts
using the multidimensional data model. Typical OLAP operations include roll-
up, drill-(down, across, through), slice-and-dice, pivot (rotate), as well as statistical
operations such as ranking and computing moving averages and growth rates.
OLAP operations can be implemented efficiently using the data cube structure.

Data warehouses often adopt a three-tier architecture. The bottom tier is awarehouse
database server, which is typically a relational database system. The middle tier is an
OLAP server, and the top tier is a client, containing query and reporting tools.

A data warehouse contains back-end tools and utilities for populating and refresh-
ing the warehouse. These cover data extraction, data cleaning, data transformation,
loading, refreshing, and warehouse management.

Data warehouse metadata are data defining the warehouse objects. A metadata
repository provides details regarding the warehouse structure, data history, the
algorithms used for summarization, mappings from the source data to warehouse
form, system performance, and business terms and issues.

OLAP servers may use relational OLAP (ROLAP), or multidimensional OLAP
(MOLAP), or hybrid OLAP (HOLAP). A ROLAP server uses an extended rela-
tional DBMS that maps OLAP operations on multidimensional data to standard
relational operations. A MOLAP server maps multidimensional data views directly
to array structures. A HOLAP server combines ROLAP and MOLAP. For example,
it may use ROLAP for historical data while maintaining frequently accessed data
in a separate MOLAP store.

Full materialization refers to the computation of all of the cuboids in the lattice defin-
ing a data cube. It typically requires an excessive amount of storage space, particularly
as the number of dimensions and size of associated concept hierarchies grow. This
problem is known as the curse of dimensionality. Alternatively, partial materializa-
tion is the selective computation of a subset of the cuboids or subcubes in the lattice.
For example, an iceberg cube is a data cube that stores only those cube cells whose
aggregate value (e.g., count) is above some minimum support threshold.

OLAP query processing can be made more efficient with the use of indexing tech-
niques. In bitmap indexing, each attribute has its own bitmap index table. Bitmap
indexing reduces join, aggregation, and comparison operations to bit arithmetic.
Join indexing registers the joinable rows of two or more relations from a rela-
tional database, reducing the overall cost of OLAP join operations. Bitmapped
join indexing, which combines the bitmap and join index methods, can be used
to further speed up OLAP query processing.

Data warehouses are used for information processing (querying and reporting), ana-
lytical processing (which allows users to navigate through summarized and detailed
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data by OLAP operations), and data mining (which supports knowledge discovery).
OLAP-based data mining is referred to asOLAP mining, or on-line analytical mining
(OLAM), which emphasizes the interactive and exploratory nature of OLAP
mining.

Exercises

3.1 State why, for the integration of multiple heterogeneous information sources, many
companies in industry prefer the update-driven approach (which constructs and uses
data warehouses), rather than the query-driven approach (which applies wrappers and
integrators). Describe situations where the query-driven approach is preferable over
the update-driven approach.

3.2 Briefly compare the following concepts. You may use an example to explain your
point(s).

(a) Snowflake schema, fact constellation, starnet query model

(b) Data cleaning, data transformation, refresh

(c) Enterprise warehouse, data mart, virtual warehouse

3.3 Suppose that a data warehouse consists of the three dimensions time, doctor, and
patient, and the two measures count and charge, where charge is the fee that a doctor
charges a patient for a visit.

(a) Enumerate three classes of schemas that are popularly used for modeling data
warehouses.

(b) Draw a schema diagram for the above data warehouse using one of the schema
classes listed in (a).

(c) Starting with the base cuboid [day, doctor, patient], what specific OLAP operations
should be performed in order to list the total fee collected by each doctor in 2004?

(d) To obtain the same list, write an SQL query assuming the data are stored in a
relational database with the schema fee (day, month, year, doctor, hospital, patient,
count, charge).

3.4 Suppose that a data warehouse for Big University consists of the following four dimen-
sions: student, course, semester, and instructor, and two measures count and avg grade.
When at the lowest conceptual level (e.g., for a given student, course, semester, and
instructor combination), the avg grade measure stores the actual course grade of the
student. At higher conceptual levels, avg grade stores the average grade for the given
combination.

(a) Draw a snowflake schema diagram for the data warehouse.

(b) Starting with the base cuboid [student, course, semester, instructor], what specific
OLAP operations (e.g., roll-up from semester to year) should one perform in order
to list the average grade of CS courses for each Big University student.
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(c) If each dimension has five levels (including all), such as “student < major <
status < university < all”, how many cuboids will this cube contain (including
the base and apex cuboids)?

3.5 Suppose that a data warehouse consists of the four dimensions, date, spectator, loca-
tion, and game, and the two measures, count and charge, where charge is the fare that
a spectator pays when watching a game on a given date. Spectators may be students,
adults, or seniors, with each category having its own charge rate.

(a) Draw a star schema diagram for the data warehouse.

(b) Starting with the base cuboid [date, spectator, location, game], what specific OLAP
operations should one perform in order to list the total charge paid by student
spectators at GM Place in 2004?

(c) Bitmap indexing is useful in data warehousing. Taking this cube as an example,
briefly discuss advantages and problems of using a bitmap index structure.

3.6 A data warehouse can be modeled by either a star schema or a snowflake schema.
Briefly describe the similarities and the differences of the two models, and then
analyze their advantages and disadvantages with regard to one another. Give your
opinion of which might be more empirically useful and state the reasons behind
your answer.

3.7 Design a data warehouse for a regional weather bureau. The weather bureau has about
1,000 probes, which are scattered throughout various land and ocean locations in the
region to collect basic weather data, including air pressure, temperature, and precipita-
tion at each hour. All data are sent to the central station, which has collected such data
for over 10 years. Your design should facilitate efficient querying and on-line analytical
processing, and derive general weather patterns in multidimensional space.

3.8 A popular data warehouse implementation is to construct a multidimensional database,
known as a data cube. Unfortunately, this may often generate a huge, yet very sparse
multidimensional matrix. Present an example illustrating such a huge and sparse data
cube.

3.9 Regarding the computation of measures in a data cube:

(a) Enumerate three categories of measures, based on the kind of aggregate functions
used in computing a data cube.

(b) For a data cube with the three dimensions time, location, and item, which category
does the function variance belong to? Describe how to compute it if the cube is
partitioned into many chunks.
Hint: The formula for computing variance is 1

N ∑N
i=1(xi − xi)2, where xi is the

average of N xis.

(c) Suppose the function is “top 10 sales”. Discuss how to efficiently compute this
measure in a data cube.

3.10 Suppose that we need to record three measures in a data cube: min, average, and
median. Design an efficient computation and storage method for each measure given
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that the cube allows data to be deleted incrementally (i.e., in small portions at a time)
from the cube.

3.11 In data warehouse technology, a multiple dimensional view can be implemented by a
relational database technique (ROLAP), or by a multidimensional database technique
(MOLAP), or by a hybrid database technique (HOLAP).

(a) Briefly describe each implementation technique.

(b) For each technique, explain how each of the following functions may be
implemented:

i. The generation of a data warehouse (including aggregation)

ii. Roll-up

iii. Drill-down

iv. Incremental updating

Which implementation techniques do you prefer, and why?

3.12 Suppose that a data warehouse contains 20 dimensions, each with about five levels
of granularity.

(a) Users are mainly interested in four particular dimensions, each having three
frequently accessed levels for rolling up and drilling down. How would you design
a data cube structure to efficiently support this preference?

(b) At times, a user may want to drill through the cube, down to the raw data for
one or two particular dimensions. How would you support this feature?

3.13 A data cube, C, has n dimensions, and each dimension has exactly p distinct values
in the base cuboid. Assume that there are no concept hierarchies associated with the
dimensions.

(a) What is the maximum number of cells possible in the base cuboid?

(b) What is the minimum number of cells possible in the base cuboid?

(c) What is the maximum number of cells possible (including both base cells and
aggregate cells) in the data cube, C?

(d) What is the minimum number of cells possible in the data cube, C?

3.14 What are the differences between the three main types of data warehouse usage:
information processing, analytical processing, and data mining? Discuss the motivation
behind OLAP mining (OLAM).
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